schema: EconSchema aspectRatio: 1.3 params: - name: a value: 0.3 min: 0 max: 1 round: 0.01 - name: L value: 50 min: 20 max: 70 round: 0.01 - name: s value: 0.3 min: 0.1 max: 0.6 round: 0.01 calcs: Keq: (((calcs.req)/((params.a)((params.L)^(1-params.a))))^(1/(params.a-1))) req: (((params.a)*(calcs.S)^(params.a-1))(params.L)^(1-params.a)) Yeq: (((calcs.Keq)^(params.a))(params.L)^(1-params.a)) Yeq2: (((30)^(params.a))*(params.L)^(1-params.a)) K: (((params.a)(30)^(params.a-1))(params.L)^(1-params.a)) S: (((params.s)*(params.L)^(1-params.a))^(1/(1-params.a))) WLreal: ((1-params.a)((calcs.Keq)^(params.a))((params.L)^(-params.a))) pi1: -(((calcs.P)*(calcs.Yeq))-(((params.L)*(calcs.WLreal))+((calcs.Keq)*(calcs.req)))) P: (((calcs.WLreal)/((1-params.a)((calcs.Keq)^(params.a))))(((calcs.Yeq)/((calcs.Keq)^(params.a)))^((params.a)/(1-params.a)))) iso: (((calcs.pi1/calcs.P)+((calcs.WLreal)*(params.L)/(calcs.P))+((calcs.req)*(calcs.Keq+14)/(calcs.P)))) layout: TwoVerticalGraphsPlusSidebar: topGraph: xAxis: min: 0 max: 30 ticks: 4 yAxis: min: 0 max: 60 ticks: 4 objects: #Função de Produção de Curto-prazo - Curve: fn: "((x)^(params.a))*(params.L)^(1-params.a)" ind: x min: 0 max: 100 color: red strokeWidth: 3.5 samplePoints: 400 #Função de Isolucro - Curve: fn: "((calcs.pi1/calcs.P)+((calcs.WLreal)*(params.L)/(calcs.P))+((calcs.req)*(x)/(calcs.P)))" ind: x min: 0 max: calcs.Keq +12 color: grey strokeWidth: 3.5 samplePoints: 300 - Segment: a: [0,60] b: [0, 60] color: Black bgcolor: white strokeWidth: 1 label: text: Y position: r fontSize: 11 - Segment: a: [30,0] b: [30,0] color: Black bgcolor: white strokeWidth: 1 label: text: \ K position: t fontSize: 11 - Segment: a: [calcs.Keq, 0] b: [calcs.Keq, 0] color: black bgcolor: "'#36a854'" label: text: calcs.Keq.toFixed(1) position: t fontSize: 11 - Segment: a: [0, calcs.Yeq] b: [0, calcs.Yeq] color: black bgcolor: "'#36a854'" label: text: calcs.Yeq.toFixed(2) position: r fontSize: 11 - Segment: a: [calcs.Keq, calcs.Yeq] b: [calcs.Keq, 0] color: green lineStyle: dotted strokeWidth: 2 - Segment: a: [calcs.Keq, calcs.Yeq] b: [0, calcs.Yeq] color: green lineStyle: dotted strokeWidth: 2 - Point: coordinates: [calcs.Keq, calcs.Yeq] color: black r: 5 - Segment: a: [30, calcs.Yeq2] b: [30, calcs.Yeq2] color: white bgcolor: "'#d62728'" label: text: F(K,L) position: l fontSize: 10 - Segment: a: [30, calcs.iso] b: [30, calcs.iso] color: white bgcolor: grey show: (calcs.Keq+10)>30 label: text: "`\\\\frac{\\\\pi}{P} + \\\\frac{W\\\\cdot L}{P} + \\\\frac{r\\\\cdot K}{P}`" position: bl fontSize: 10 - Segment: a: [calcs.Keq+10, calcs.iso] b: [calcs.Keq+10, calcs.iso] color: white bgcolor: grey label: text: "`\\\\frac{\\\\pi}{P} + \\\\frac{w_{L}\\\\cdot L}{P} + \\\\frac{w_{K}\\\\cdot K}{P}`" position: bl fontSize: 10 bottomGraph: xAxis: min: 0 max: 30 ticks: 4 yAxis: min: 0 max: 1.99 ticks: 4 objects: #Função de Demanda de Capital - Curve: fn: "(((params.a)(x)^(params.a-1))(params.L)^(1-params.a))" ind: x min: 0 max: 30 color: blue strokeWidth: 3.5 samplePoints: 300 #Função de Oferta de Capital - Segment: a: [calcs.S, 10] b: [calcs.S, 0] color: red strokeWidth: 3.5 - Segment: a: [30,0] b: [30,0] color: Black bgcolor: white strokeWidth: 1 label: text: \ K position: t fontSize: 11 - Segment: a: [0 ,1.99] b: [0 ,1.99] color: Black bgcolor: white strokeWidth: 1 label: text: w_{k} position: r fontSize: 14 - Segment: a: [calcs.Keq, 0] b: [calcs.Keq, 0] color: black bgcolor: "'#36a854'" label: text: calcs.Keq.toFixed(1) position: t fontSize: 11 - Segment: a: [0, calcs.req] b: [0, calcs.req] color: black bgcolor: "'#36a854'" label: text: calcs.req.toFixed(2) position: r fontSize: 11 - Segment: a: [calcs.Keq, calcs.req] b: [0, calcs.req] color: green lineStyle: dotted strokeWidth: 2 - Point: coordinates: [calcs.Keq, calcs.req] color: black r: 5 - Segment: a: [30, calcs.K] b: [30, calcs.K] color: white bgcolor: "'#1f77b4'" label: text: w_{k}(I) position: l - Segment: a: [calcs.S, 1.5] b: [calcs.S, 1.5] color: "'#d62728'" bgcolor: white label: text: S(Y) sidebar: controls: - title: Modelo Clássico de Equilíbrio Geral sliders: - param: a label: \alpha digits: 3 - param: L label: L digits: 4 - param: s label: s digits: 3 divs: - html:
- html: '`Os resultados relevantes dessa economia são: $$\\pi = ${calcs.pi1.toFixed(2)}$$ $$ P=${calcs.P.toFixed(2)} $$ $$ w_{L}= ${calcs.WLreal.toFixed(3)} $$ $$ w_{k}=${calcs.req.toFixed(2)} $$`' - html: 'O fato do Lucro ($\pi$) dessa economia ser igual a zero nos mostra que estamos numa estrutura de mercado de Competição Perfeita.' - html: '`$$\\pi = RT - CT$$ $$\\Longleftrightarrow$$ $$\\pi = P \\cdot Y - (w_{L} \\cdot L + w_{K} \\cdot K) $$ $$\\Longleftrightarrow$$ $$\\pi = ${calcs.P.toFixed(2)} \\cdot ${calcs.Yeq.toFixed(2)} - ( ${calcs.WLreal.toFixed(3)} \\cdot ${params.L.toFixed(2)} + ${calcs.req.toFixed(2)} \\cdot ${calcs.Keq.toFixed(2)})$$ $$\\Longleftrightarrow$$ $$\\pi=${calcs.pi1.toFixed(2)}$$`' - html:
- html: 'A Função de Produção é do tipo Cobb-Douglas : $${F(K,L) = K^a \cdot L^{1-a}}$$' - html: 'A função de demanda por Capital (K) é dada pela derivada parcial de ${F(K,L)}$: $${\frac{\partial F(K,L)}{\partial K}=a \cdot K^{a-1} \cdot L^{1-a}=w_{K}}$$ em que ${\bf{w_K}}$ é a remuneração do Capital (K). De modo que, $${w_{k}= (1+r)}$$ Logo, $${r= w_{k} - 1}$$' - html: 'A função de oferta de Capital (K) — ou poupança (S) — é modelada como sendo uma proporção constante da renda (Y), dado pelo parâmetro (${s}$): $${S(Y)=s \cdot Y}$$ $${\Longleftrightarrow}$$ $${S(Y) = s \cdot (K^a \cdot L^{1-a})}$$ Resolvendo implicitamente, encontramos: $${s \cdot (K^a \cdot L^{1-a})=K}$$ $${\Longleftrightarrow}$$ $${\frac{K}{K^a}=s \cdot L^{1-a}}$$ $${\Longleftrightarrow}$$ $${K=\left( s \cdot L^{1-a} \right)^{\frac{1}{1-a}}}$$'